
Solution of the particle transfer equation in a one-dimensional conservative potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 2723

(http://iopscience.iop.org/0305-4470/15/9/022)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 16:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 2723-2726. Printed in Great Britain 

Solution of the particle transfer equation in a 
one-dimensional conservative potential 

D J Bond 
The Blackett Laboratory, Imperial College of Science and Technology, London SW7 
2BZ, England 

Received 10 August 1981, in final form 19 April 1982 

Abstract. A numerical procedure for the solution of the single total energy group transfer 
equation is given. The acceleration of the iterative method which is employed is discussed 
and examples are given. For simplicity isotropic scattering is used. 

The solution of the particle transfer equation, in the absence of external forces, has 
been discused by many authors (see, for example, Dudestadt and Martin 1979). 
Discrete ordinate methods have been widely used in neutron and radiation transfer 
calculations and have recently been applied to charged particle transfer problems 
(Wienki 1979, Ante1 and Lee 1976). This paper discusses the simplest possible 
application of the discrete ordinate method to charged particle motion in a conservative 
potential; one-dimensional slab geometry and isotropic scattering are assumed and 
only one total energy group is considered. The solution of this idealised problem 
does however present some interesting problems. 

The time-independent transfer equation for particles moving under the influence 
of a potential field rp, being absorbed with characteristic length X i 1  and scattered with 
characteristic length Xi' is 

The characteristics of the collisionless version of equation (1) are the trajectories of 
the collisionless particles. Motion, including elastic scattering, in the potential will 
alter the kinetic energy but not the total energy, imvL+rp, of the particles. These 
considerations suggest that a scheme for solving the transfer equation based on the 
total energy and a set of discrete directions which follow the motion of the collisionless 
particles may be adopted usefully. The motivation behind this is analogous to the 
use of the 'cylindrical approximation' for radiation transfer in a one-dimensional 
spherical atmosphere (Hummer and Rybicki 1970). It has been found convenient to 
solve not for the distribution function but for the particle flux per unit total energy 
in a given direction, 1/1. 

Figure 1 illustrates the angular mesh which is used. The potential is constant in 
each cell. In order to relate the flux to the flux per solid angle it is necessary to assign 
quadrature weights to each of the discrete angles which is used. This is done in the 
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Figure 1. [ a )  The change of angle with position along a trajectory. (6)  The potential as 
a function of position. 

simplest possible manner by the prescription 
1 1 

W ,  =-i(P,+l+PI)--i(Pl +P,-l) 

(2)  

where N is the number of values of p in the range 0-1. This number varies across 
the mesh. The choice of angles is somewhat arbitrary. That which has been adopted 
is to choose the set of angles in the first cell so that subsets of this set are distributed 
uniformly in direction cosine in a number of cells. Sufficient angles must be chosen 
so that the following approximations hold 

(3) 

In the computation results given below 50 angles were used. 
The iteration strategy used to solve the tranfer equation is as follows. An initial 

guess is made at the source of particles from scattering for each group in each cell. 
The flux CC, is then calculated along the direction of motion of the collisionless particles 
one angle at a time. The fluxes are then used to obtain a new estimate of the source 
and the whole calculation is iterated. This is the usual inner-iteration strategy of 
neutron transport codes. The source is taken to be of the form 

(4) 

in the range x ,  to This is the form used by (Alcouffe et a1 1979, Lee and 
Vaidyanathan 1980) in one-dimensional neutron transport problems. The flux is 
integrated along the particle trajectories using (for g > 0) 

( 5 )  

h + 1 =  4:+1cL,/CL,+1 (6) 

1 1 
w1= 1-z(P1++2) W N = d # N - l - P N )  

2 t = c WCLl f = C W , P 1 .  

S ( X )  = s 1 + 1 / 2 +  Tl+l/Z(X - -X,+1/2)  

= 4, exp(-&,) + S , P  -exp(- E , ) ] +  (Ax,T,lc+,)[l- (b+ l / E l ) ( l  -exp(- E , ) ) ]  

where 

= (+r+1/2AXI/Pl and cT,+1/2 = (Z,+”s1/2. 

Equation (6 )  together with equation (2) and the relation dET = mvdv ensure that for 
an infinitely fine mesh, f is a constant along the particle trajectories in the collisionless 
case. The value of SI used for the next iteration is calculated from the cell average fluxes 
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T is calculated from the gradient of the sources calculated at the boundaries by 

Equations (5)-(8), together with appropriate boundary conditions, provide a basis for 
the solution of the one group transfer equation. However, the iteration procedure 
which is used, the A iteration of radiation transfer (Mihalas 1978), may be very slow 
to converge for systems which are many scattering distances across. A number of 
acceleration schemes exist (Miller 1978) of which the diffusion synthetic acceleration 
(Alcouffe 1977) has achieved considerable success. This method makes use of, but 
does not depend on the validity of, diffusion theory. The adoption of this method 
requires the use of the total energy group diffusion equation (Kershaw 1979, Bond 
1980) which may be derived by transforming equation (1) so the independent variables 
are ET, x and p and expanding the distribution function in the f (En x ,  ,U)= 

x )  + p f l ( E ~ ,  x ) .  This yields 

dx z'1u2 3 dx (q+vH,N=source .  v 

This equation has been used as the basis of the following acceleration scheme 

d Z i 1 v 2  d N d d Z; 'v2  d fi 
dx 3 dx v dx 3 dx v dx 

= source - - - - (-) - - (J) - - - - (-) + Zav2( f, 

(9) 

where 

N = -  4 d p .  'I and 
0 

This equation, subject to suitable boundary conditions, is solved to obtain N / V  at 
one side of the cell boundaries. The ratio of this to the unaccelerated value of N / V  
is used to multiply the fluxes. 

Two problems arise in this approach. Firstly the approximations described by 
equation (3) result in the solution of the transfer equation not quite corresponding 
to diffusion theory, This may be partially overcome by using a large number of angular 
points. This may also be mitigated by, for instance, replacing 5 in equation (10) by 
the approximation given in equation (3). No such approach is used in the numerical 
results presented here. Secondly (N/ V )  is discontinuous at the cell boundaries. This 
may lead, forexample, to large jumps in N/ V at boundaries, in the course of iteration, 
when the solution is well approximated by diffusion theory. For large E and scattering 
ratio Zs/(Zs + Z,) close to unity this can lead to the iteration giving negative densities. 
This problem has been partially overcome by performing an unaccelerated iteration 
whenever the acceleration procedure gives rise to large changes in the densities. In 
the calculations used here, changes of greater than 10 or less than 0.5 resulted in the 
next iteration not being accelerated. This procedure has enabled mesh lengths of 10 
mean free paths to be used with a scattering ratio of unity. This is more than adequate 
for most purposes. 

A further problem associated with the use of equation (10) is that equation (7) 
does not hold for the accelerated fluxes. Indeed equation ( 5 )  must be used, together 
with the expression for Ti from equation (8) where the accelerated fluxes are used. 
This gives from which & + 1 / 2  may be calculated. In order that the converged 
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solution should be unaltered by the acceleration method it is necessary to use 

Table 1 gives results on the number of iterations required for convergence to 
in the densities for a variety of different values of E and values of the scattering ratio. 
The source of particles is at one end of the mesh and either free flow or reflection 
boundary conditions are applied at the other end. This clearly demonstrates the value 
of the acceleration technique. 

Table 1. The number of iterations required for convergence to in the densities for 
a variety of different values of E and values of the scattering ratio: A, no E field. Free 
flow at right hand boundary. Z, = 0. B, constant E field giving a potential of 0.6 of the 
total energy across the mesh. Free flow at right boundary. & = O .  C, as B but with 
reflection boundary condition. D, as C but with Xa = &. (* did not converge in 400 
iterations.) 

Case 

Depth Acceleration a b C d 

1 
1 
2 
2 

10 
10 
25 
25 
50 
50 

Yes 
No 
Yes 
No 
Yes 
No 
Yes 
No 
Yes 
No 

9 
14 
10 
23 
14 

140 
16 

21 
* 

* 

7 
15 
9 

23 
10 

111 
14 

23 

11 
16 
4 

43 
12 

23 1 
9 

11 
* 

7 
7 
8 
9 
9 

15 
I 2  
22 
21 
31 
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